Reactivity and Physicochemical Characterisation of V₂O₅~WO₃/TiO₂ De-NO_x Catalysts

Luis J. Alemany,* Luca Lietti,* Natale Ferlazzo,* Pio Forzatti,* Guido Busca,† Elio Giamello,‡ and Fiorenzo Bregani§

*Dipartimento di Chimica Industriale e Ingegneria Chimica "G. Natta," Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan; †Istituto di Chimica, Facoltà di Ingegneria, Università, Piazzale Kennedy, 16129 Genoa; ‡Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Università di Torino, Turin; and §Centro Ricerche Ambiente e Materiali, ENEL-DSR

Via Monfalcone 15, 20132 Milan, Italy

Received August 8, 1994; revised February 20, 1995

V₂O₅-WO₃/TiO₂ samples with compositions similar to those of commercial de-NO_x catalysts (WO₃ \sim 9% w/w, V₂O₅ < 3% w/w) are characterised by XRD, surface area and pore size distribution, Fourier transform infrared, laser Raman, UV-vis diffuse reflectance, electron paramagnetic resonance spectroscopies, and catalytic tests in the reduction of NO_x by NH₃. The V₂O₅-WO₃/TiO₂ catalysts exhibit higher reactivity than the binary V2O5/TiO2 and WO₃/TiO₂ samples with the same metal loading, and the temperature window for the SCR reaction is greatly widened. The catalysts consist of anatase TiO2 and their morphological properties closely resemble that of WO₃/TiO₂ for (V + W) surface coverages lower than one. Monomeric vanadyls and wolframyls and polymeric W, O, groups are observed in the samples with low vanadia loadings that are apparently similar to those present on the surface of the binary oxide systems with comparable metal loadings. On increasing the vanadium loading, polyvanadate species are also formed. EPR, FTIR, FT-Raman, and UV-vis techniques indicate a strong electronic interaction between V and W oxide species at the surface of the TiO₂ support. This interaction leads to a higher reducibility of the ternary sample with respect to the corresponding binary ones. A synergism between V and W oxide surface species is suggested, which accounts for the high reactivity of the ternary samples in the SCR reaction. It is suggested that the higher reducibility of the samples, due to the electronic interactions between V and W and the TiO₂ support, is responsible for the higher reactivity of the ternary catalysts, particularly at low temperatures. © 1995 Academic Press, Inc.

INTRODUCTION

V₂O₅-WO₃/TiO₂ catalysts are widely used in the selective catalytic reduction (SCR) of nitrogen oxides in power plant stack gases (1, 2).

In commercial De-NO_x SCR catalysts TiO₂ anatase is used as a base material ($\sim 80\%$ w/w) to support the active components. V₂O₅ is responsible for the activity both in the reduction of NO_x (3) and in the oxidation of SO₂,

present in glue gas, to SO_3 (4); the V_2O_5 content is generally low (<2% w/w) and is reduced below 1% w/w in high-sulphur applications to limit the concentration of SO_3 at the exit of the catalytic reactor. WO₃ provides thermal stability to the catalyst, presents a much lower activity in both denitrification and SO_2 oxidation reactions, and is employed in relatively large amounts (~10% w/w).

 V_2O_5/TiO_2 catalysts have been extensively studied in the past (5-14). It has been reported that vanadia dispersed on TiO_2 anatase is present in the form of isolated vanadyls and polymeric V_xO_y species (15-17) and that monomeric vanadyls predominate at low V_2O_5 loadings (15). Catalytic tests have shown that the specific activity of polymeric V_xO_y species in the SCR reaction is much higher than that of monomeric vanadyl species (18, 19).

Reports are also available on the structure and reactivity of WO_3/TiO_2 (20–28). It has been demonstrated that: (i) WO_3 inhibits the initial sintering of anatase TiO_2 and the anatase to rutile transition; (ii) both monomeric wolframyls and polymeric W_xO_y groups are present at the catalyst surface; (iii) monomeric wolframyls predominate at lower WO_3 loadings; (iv) tungsta imparts to the system strong Lewis and Broensted acidity; and (v) the denitrification activity of WO_3/TiO_2 is much lower than that of V_2O_5/TiO_2 .

However, investigations on V₂O₅-WO₃/TiO₂ catalysts are scarce (29–35). In a preliminary study performed by using infrared and UV-vis diffuse reflectance spectroscopies it has been proposed that surface vanadium oxide and tungsten oxide species consist of mono-oxo vanadyls and wolframyls closely resembling those present in the binary oxide catalysts. Besides, WO₃ was reported to widen the temperature window of SCR, to increase the poison resistance to alkali metal oxides and arsenious oxide, and to reduce ammonia oxidation as well as SO₂ oxidation.

In this paper the reactivity in the reduction of NO by NH₃ and the structural, morphological, and physicochem-

¹ On leave from University of Malaga, Spain.

ical characteristics of V_2O_5 -WO₃/TiO₂ de-NO_x catalysts are reported. X-ray diffraction (XRD), surface area (S_a) and pore size distribution measurements, electron paramagnetic resonance (EPR), UV-vis diffuse reflectance (UV-vis DR), Fourier transform infrared (FTIR), and laser Raman (LR) were employed with the purpose of clarifying the bulk, surface, acid, and redox properties of this catalytic system as compared to those of the corresponding V_2O_5 /TiO₂ and WO₃/TiO₂ systems.

METHODS

Catalyst Preparation

 V_2O_5 – WO_3 /TiO $_2$ catalysts were prepared by dry impregnation of WO_3 /TiO $_2$ calcined at 873 K with a hot water solution of ammonium metavanadate and oxalic acid, followed by drying and calcination at 823 K for 2 h. The V_2O_5 content in the samples was varied between 0.3 and 3.56% w/w. Details on the preparation of the WO_3 /TiO $_2$ sample have already been reported in (21). The outgassed samples were obtained by heating at 423 K under vacuum (70×10^{-3} Torr) for 4 h. Reference catalysts consisting of V_2O_5 /TiO $_2$ with similar V_2O_5 weight contents were prepared as described elsewhere (21, 22). The catalysts are identified in the paper according to their V_2O_5 and WO_3 content, e.g., V_2O_5 (1.0)– WO_3 (9)/TiO $_2$ identifies a sample with $WO_3 = 9\%$ w/w and $V_2O_5 = 1.0\%$ w/w.

Catalytic Measurements

Catalytic measurements have been carried out in a quartz tubular fixed bed microreactor (i.e. 7 mm) containing 160 mg catalyst. A feed consisting of ~ 800 ppm NO, ~ 800 ppm NH₃, and $\sim 1\%$ v/v of oxygen in helium was used (total flow rate = 60 N cm³/min). NO conversion was measured by means of a UTI quadrupole mass spectrometer (QMS) whereas the analysis of N₂ and N₂O was carried out by on-line GC using a poraplot Q and a 5 Å molecular sieve column in a parallel arrangement. Further details on the experimental procedure can be found elsewhere (19).

Characterisation of Catalysts

Powder X-ray diffraction analyses have been performed with a Philips vertical goniometer PW 1050-70 and Ni-filtered $CuK\alpha$ radiation.

Surface area and micro- and mesopore size distribution have been determined by N_2 adsorption with the BET method using a Carlo Erba Sorptomatic 1800 Series instrument. Mesopore distribution measurements have been obtained by the mercury penetration method using a Carlo Erba Porosimeter 2000 Series instrument.

The FTIR spectra were recorded by a Nicolet 5ZDX FTIR spectrometer equipped with a greaseless gas manip-

ulation/evacuation ramp, an infrared cell, and a furnace for sample heating. Both self-supporting pressed disks of pure powders and KBr pressed disks were used.

Laser-Raman spectra were recorded with a Dilor multichannel spectrometer using an argon spectra Physic Laser (514.6 nm). FT-laser-Raman spectra were also collected by using a Nicolet 910 laser Raman spectrometer (1064 nm).

The EPR spectra have been recorded in the X-band mode by a Varian E109 spectrometer operating between 9.2 and 9.5 GHz microwave frequency and with a field modulation of 100 kHz. The spectrometer was equipped with a computer interface for spectra recording and elaboration. The spectra were recorded both at room temperature and at 77 K. Varian pitch (g = 2.0028) was used as a reference standard for g values.

UV-vis DR spectra were obtained by using a Jasco double-beam spectrometer equipped with an integrating sphere. The outgassing of the catalysts upon heating at 423 K under vacuum (70×10^{-3} Torr) was followed by the recording *in situ* of the UV-vis DR spectra at r.t. A homemade cell was used for this purpose.

RESULTS

1. XRD and Morphology

To investigate the effect of tungsten on the catalyst morphological properties, ternary V₂O₅-WO₃/TiO₂ samples with different WO₃ (1, 3, and 9% w/w) and V₂O₅ (0-3.56% w/w) contents were prepared. Figure 1 reports the catalysts surface areas as a function of the (W + V)coverage. The curves reported in Fig. 1 refer to catalysts with the same V₂O₅ or WO₃ loading (solid and dotted lines, respectively). The figure clearly shows that a significant loss of surface area occurs upon V₂O₅ addition for the samples with low WO₃ loading. Indeed for the samples with $WO_3 = 1\%$ w/w the surface area significantly decreases on increasing the V₂O₅ loading up to 1.4% w/w. As shown in Fig. 1 this is not the case for the samples with high WO₃ loadings, for which only a limited decrease in the surface area has been observed. It can be concluded that WO₃ loadings of about 10% w/w are most suited to preserve the specific surface area in the ternary V₂O₅-WO₃/TiO₂ catalysts.

Samples with high WO₃ loadings (9% w/w) have been used for further investigations. Table 1 shows the phase composition, the mean crystal dimension (d_{cryst}), the surface area (S_a), the pore volume (V_p), the mean pore radius (r_p), and the W, V, and (W + V) surface coverages for the ternary catalysts with WO₃ = 9% w/w. Surface coverages have been calculated assuming a monolayer capacity of 7 micromoles/m² for WO₃ (36) and of 0.145% w/w for V₂O₅/m² (37). The surface coverage of (W + V) has been

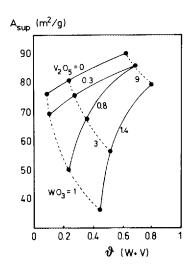


FIG. 1. Catalyst surface areas (m^2/g) as a function of the (V + W) coverage. Solid lines and dotted lines refer to samples with the same V_2O_5 and WO_3 loading, respectively.

estimated by summing those of W and V. From Table 1 it appears that the theoretical monolayer coverage in terms of (W + V) is approached in the samples with $V_2O_5 = 2.56\%$ w/w and is exceeded with $V_2O_5 = 3.56\%$ w/w.

All the samples with $V_2O_5 < 3.56\%$ w/w are monophasic and only the anatase polymorphic form of TiO_2 is detected; traces of the rutile form are detected in the catalyst with $V_2O_5 = 3.56\%$ w/w. No significant differences are observed in the crystallite dimensions of anatase on increasing the V_2O_5 content with the only exception of the sample with the highest vanadium loading where a slight growth of the particles was measured.

The morphological characteristics of the samples are modified only to a limited extent on increasing the vanadia loading up to 2.56% w/w ($S_a = 90-78 \text{ m}^2/\text{g}$, $V_p = 0.3-0.35 \text{ cm}^3/\text{g}$, $r_p = 50-100 \text{ Å}$). A more pronounced reduction in surface area (64 m²/g), a slightly larger pore volume (0.38)

cm³/g), and a bimodal pore size distribution ($r_p = 70$ and 200 Å) are observed in the sample with the highest vanadium loading ($V_2O_5 = 3.56\%$).

On increasing the calcination temperature to 873 K no significant changes in phase composition and crystallite dimensions are detected. Only for the sample with $V_2O_5=3.56\%$ w/w are traces of V_2O_5 (XRD lines at $2\theta=26.18^\circ$, 20.31°, and 31.06°) observed. Besides, larger crystallite dimensions of anatase TiO_2 (227 Å vs 173 Å) are evident. It is worth noting that V_2O_5 is already detected in this sample by FTIR spectroscopy after calcination at 823 K due to the higher sensitivity of this technique.

The morphological data of Table I indicate that vanadia affects both the initial sintering of TiO_2 and the anatase to rutile transformation in V_2O_5 – $WO_3(9)/TiO_2$ catalysts only at high vanadia loadings ($V_2O_5 = 2.56-3.56\%$ w/w) that correspond to surface coverages of (W + V) close to or greater than 1. In this case the two processes mentioned above are faster, particularly at high calcination temperatures; larger dimensions of the anatase crystals are measured traces of rutile and V_2O_5 are detected, and a bimodal pore size distribution is observed that is associated with the incipient anatase to rutile transformation. This is consistent with the well-known promoting effect of vanadia on both the TiO_2 sintering and the anatase to rutile transformation.

2. Catalytic Activity Measurements

The results of catalytic tests in the reduction of NO by NH₃ performed over different V₂O₅/WO₃(9)/TiO₂ catalysts and over V₂O₅/TiO₂ and WO₃/TiO₂ samples with the same metal loadings are shown in Fig. 2.

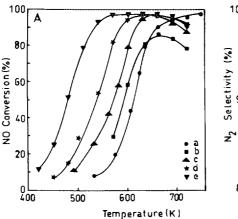

The reactivity of the ternary catalysts is significantly higher than that of the binary samples with the same V loadings; in the presence of WO₃, the temperature required for 50% conversion is lowered from \sim 590 K to \sim 540 K for $V_2O_5 = 0.78\%$ w/w, and from \sim 570 K to

TABLE 1 Structural and Morphological Data of $V_2O_5(x)-WO_3(9)/TiO_2$ Samples (x=0-3.56% w/w) Calcined at 823 K

V ₂ O ₅ (% w/w)	0	0.3	0.78	1.00	1.40	2.56	3.56
Phases	Α	Α	Α	A	Α	A	\mathbf{A}^{a}
$d_{\text{cryst.}}$ (Å)	155	140	144	146	140	140	173
S_a (m ² /g)	90	85	87	87	80	78	64
$V_{\rm p}$ (cm ³ /g)	0.31	0.33	0.32	0.30	0.30	0.35	0.38
$r_{\rm p}(\rm \mathring{A})$	55	65	70	70	70	100	70/200
W coverage	0.60	0.63	0.62	0.62	0.67	0.69	0.84
V coverage	0.00	0.02	0.06	0.08	0.12	0.23	0.38
(W + V) coverage	0.60	0.65	0.68	0.70	0.79	0.92	1.22

Note. A = anatase.

[&]quot; Trace of rutile.

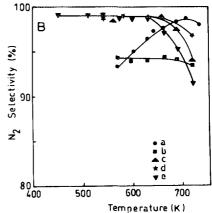


FIG. 2. NO conversion (A) and N₂ selectivity, defined as $[N_2]/([N_2] + [N_2O])$, (B) versus temperature over: WO₃(9)/TiO₂ (a), V₂O₅(0.78)/TiO₂ (b), V₂O₅(1.4)/TiO₂ (c), V₂O₅(0.78)-WO₃(9)/TiO₂ (d), and V₂O₅(1.4)-WO₃(9)/TiO₂ (e). Experimental conditions: catalyst weight, 160 mg (60–100 mesh); P = 1 atm; flow rate, 60 N cm³/min; feed, He + 800 ppm NH₃ + 800 ppm NO + ~1% O₂.

 \sim 480 K for $V_2O_5 = 1.4\%$ w/w. This clearly indicates that WO₃ increases the activity of V_2O_5/TiO_2 catalysts. Besides, the temperature window corresponding to high NO conversion and almost complete selectivity to N_2 is greatly amplified in the ternary catalysts since the catalysts are active at lower temperatures and high selectivites to N_2 are preserved in the high-temperature region.

A correspondence is always observed between the decrease in NO conversion and the decrease in N_2 selectivity. Lower N_2 selectivities are measured in the case of poorly active catalysts such as $V_2O_5(0.78)/TiO_2$ and WO_3/TiO_2 , possibly because of the greater relative importance of the direct oxidation of ammonia.

The data have been analysed assuming an isothermal plug flow reactor model and a first-order power-law rate equation ($r = k^{\circ} \exp(-E_{\rm act}/RT) C_{\rm NO}$) to estimate k° and $E_{\rm act}$, after verifying the absence of interphase and intraparticle diffusion limitations. Comparable values of the activation energy in the range 13–15 Kcal/mol have been calculated for $V_2O_5/{\rm Ti}O_2$ and $V_2O_5/{\rm WO}_3(9)/{\rm Ti}O_2$ catalysts. In the case of $WO_3/{\rm Ti}O_2$ a slightly higher value of $E_{\rm act}$ has been estimated (18 Kcal/mol). These values compare well with those reported in the literature for vanadia/titania-based catalysts, i.e., 10-15 Kcal/mol (38).

The values of the preexponential factors and of the activation energies have been used to calculate the V and W turnover frequencies (TOF, moles of NO converted s⁻¹ mol V⁻¹ or W⁻¹) for the binary systems (Table 2). The contribution of the exposed Ti atoms has been taken into account in the calculation of the TOFs. From Table 2 it appears that the TOFs of the vanadia/titania catalysts increase on increasing the vanadia loading (18, 19) and are much greater than those of the tungsta/titania sample, in line with the well-known higher activity of vanadia/titania as compared to tungsta/titania in the SCR reaction.

The reactivity of the ternary V₂O₅/WO₃(9)/TiO₂ catalysts has been tentatively described by the simple additive model

$$R_{\text{spec}} = \text{TOF}_{\text{V}} \times \frac{\text{moles V}}{g_{\text{cat}}} + \text{TOF}_{\text{W}} \times \frac{\text{moles W}}{g_{\text{cat}}},$$
 [1]

where $R_{\rm spec}$ is the specific rate of reaction (moles of NO converted s⁻¹ $g_{\rm cat}^{-1}$). Equation [1] assumes that the specific rate of reaction of the ternary catalysts can be obtained by simple addition of the contributions of vanadia and tungsta to NO consumption. These contributions are estimated by the turnover frequencies of V and W in V_2O_5/TiO_2 and WO_3/TiO_2 catalysts with the same loadings, respectively. In Eq. [1] the reactivity of the exposed TiO_2 surface on NO consumption can be safely neglected.

The values of $R_{\rm spec}$ estimated according to Eq. [1] for three different V_2O_5 - WO_3 / TiO_2 catalysts have been reported in Fig. 3 (filled symbols), where they are compared with the corresponding experimental ones (open sym-

 $TABLE\ 2$ Calculated Turnover Frequency (TOF, mol NO Converted s^{-1} mole V^{-1} or $W^{-1})$ for the Vanadia/Titania and Tungsta/Titania Catalysts

Catalyst		Turnover frequency (TOF)				
	V or W coverage	500 K	550 K	600 K		
		0.003×10^{-3}	0.012×10^{-3}	0.040×10^{-3}		
V ₂ O ₂ (0.8)/TiO ₂	0.09	0.208×10^{-3}	0.703×10^{-3}	1.926×10^{-3}		
V ₂ O ₂ (1.47/TiO ₂	0.21	0.224×10^{-3}	0.787×10^{-3}	2.223×10^{-3}		
V ₂ O ₂ (3.56)/TiO ₂	0.51	2.205×10^{-3}	6.822×10^{-3}	1.526×10^{-2}		
WO ₃ (9)/TiO ₂	0.6	0.017×10^{-3}	0.091×10^{-3}	0.353×10^{-3}		

Note. Assumed NO concentration = 1000 ppm.

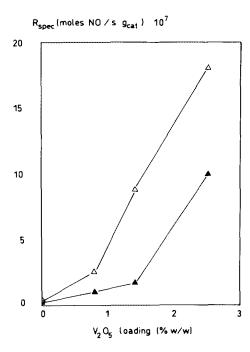


FIG. 3. Values of $R_{\rm spec}$ (Moles NO converted s⁻¹ $g_{\rm cal}^{-1}$) for $V_2O_5(x)-WO_3(9)/TiO_2$ catalysts as a function of the V_2O_5 loading. T=550 K; NO = 1000 ppm. Filled symbols, calculated according to Eq. [1]; open symbols, calculated from the estimated values of the activation energy and preexponential factor.

bols). From Fig. 3 it appears that for all the investigated V_2O_5 – WO_3 /TiO₂ samples the specific rate of reaction is 2–4 times smaller than that measured over the same catalysts. This indicates that the reactivity of V and/or W active species in the ternary catalysts is higher than that observed over the binary samples with the same V_2O_5 and WO_3 loadings.

It has been previously reported (18, 19) that over V_2O_5 / TiO₂ binary catalysts the vanadium TOFs increase on increasing the V₂O₅ coverage. This has been associated with the formation of highly active polyvanadate species. One can speculate that the presence of tungsten oxide in V_2O_5 - WO_3 / TiO_2 catalysts may reduce the TiO_2 surface area available for vanadium so that the vanadium coverage is eventually increased. This will favour the formation of polyvanadate species, thus increasing catalyst reactivity. Along these lines, calculations were also performed by assuming that V_2O_5 is dispersed only onto the fraction of the TiO2 surface which is not covered by tungsta, and the vanadium TOF values corresponding to those new coverages have been introduced in Eq. [1]. Still the values of $R_{\rm spec}$ estimated with Eq. [1] are lower than the corresponding experimental ones by roughly a factor of 2. This eventually indicates that the formation of polyvanadate species (if any) cannot be fully responsible for the increase in the catalytic activity which is observed by passing from the V_2O_5/TiO_2 catalysts to the $V_2O_5-WO_3/TiO_2$ samples. This is also in line with the observation that the increase in the reactivity is not accompanied by the corresponding decrease in the selectivity which is typically observed upon increasing the V_2O_5 loading over binary $V_2O_5/\text{Ti}O_2$ samples [18, 19]. This eventually suggests the existence of a synergism between V and W in the SCR reaction. To further investigate this interaction a detailed physicochemical characterisation of the ternary samples has been undertaken and is reported in the following sections.

3. Electron Paramagnetic Resonance

The ternary V₂O₅-WO₃(9)/TiO₂ catalysts exhibit an intense and well-resolved EPR spectrum both after calcination (823 K) and after reduction (annealing at 423 K). The spectrum obtained on the calcined $V_2O_5(1.0)-WO_3(9)/$ TiO₂ sample is reported in Fig. 4a; the spectrum has been recorded after quick outgassing of the fresh samples at room temperature in order to remove the oxygen atmosphere from the EPR cell. The spectra of the $V_2O_3(0.3)-WO_3(9)/TiO_2$ and $V_2O_5(1.4)-WO_3(9)/TiO_2$ samples show basically the same profile. The spectrum of V₂O₅(1.0)-WO₃(9)/TiO₂, however, is more intense than that of $V_2O_5(0.3)-WO_3(9)/TiO_2$ by a factor of about 2 while that of V₂O₅(1.4)-WO₃(9)/TiO₂ is only slightly more intense than that of V₂O₅(1.0)-WO₃(9)/TiO₂. The spectrum in Fig. 4a is due to tetravalent vanadium and specifically to vanadyl VO²⁺ ions (see below); this is indicated by the presence of the hyperfine structure due to the 51V nucleus (I = 7/2, multiplicity 8). The resolution of the spectrum is fairly good and indicates, however, a complex situation in that at least three families of V(IV) ions are

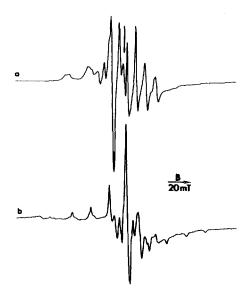


FIG. 4. EPR spectra of $V_2O_5(1.0)-WO_3(9)/TiO_2$ catalyst calcined at 823 K after outgassing at r.t. (a) and $V_2O_5(1.0)/TiO_2$ after outgassing at 473 K for 1 h (b). The vertical arrow indicates g = 2.0028. The magnetic induction B is in milliTesla (1 mT = 10 G).

present. Two of them are magnetically isolated VO²⁺ ions (I and II), giving rise to structured EPR signals characterised by axial g and A tensors with slightly different principal values due to minor differences in the oxygen coordination. The third family consists of magnetically interacting V(IV) centers which give rise to a broad and structureless EPR line that is responsible, in the spectrum reported in Fig. 4, for the nonlinearity of the base line. The parameters obtained by a preliminary computer simulation of the experimental spectrum are as follows: species I, $g_{\parallel} = 1.912$, $g_{\perp} = 1.983$, $A_{\parallel} = 195$ G, and $A_{\perp} = 74$ G; species II, $g_{\parallel} = 1.905$, $g_{\perp} = 1.978$, $A_{\parallel} = 195$ G, and $A_{\perp} = 69$ G. The simulation also indicates that the abundance of the two families of isolated ions (I and II) is nearly the same and that the amounts of interacting ions are slightly higher than the amount of whole isolated ions.

The presence of isolated V(IV) after calcination at high temperatures is typical of $V_2O_5-WO_3/TiO_2$. In the case of the V_2O_5/TiO_2 reference system ($V_2O_5=1.0\%$ w/w) the typical vanadium EPR spectrum is visible only in the case of the reduced samples, or it appears upon the annealing of the calcined samples at T>423 K (Fig. 4b). Besides, the spectra of the binary V_2O_5/TiO_2 samples are (for the same annealing temperature) about one order of magnitude less intense than those of the $V_2O_5-WO_3/TiO_2$ samples with the same vanadium loading. It can thus be concluded that the ternary samples exhibit a higher capability in stabilizing isolated tetravalent vanadium ions than the corresponding binary samples.

The third family of V(IV) ions is likely constituted by vanadylic groups which, in comparison with the magnetically isolated ones, are close to one another. The mutual magnetic interaction is high enough to smear the ⁵¹V hyperfine structure but is not high enough to give rise to true coupled systems, the spectra of which are expected to be very different.

The two families of magnetically isolated V(IV) have a clear vanadylic character. This can be stated on the basis of the relatively high value of both $g_{\rm iso}$ and $a_{\rm iso}$ $(g_{iso} = (g_{\parallel} + 2 g_{\perp})/3, a_{iso} = (A_{\parallel} + A_{\perp})/3)$ which fall, according to the approach followed in (39, 40), in the region typical of the vanadyl groups. These vanadyl ions, furthermore, are stabilised at the surface (or near the surface) of the anatase TiO₂ phase and should have, in analogy with other well-defined species with similar spin-Hamiltonian parameters, a square pyramidal symmetry. This can be deduced on the basis of both a scrutiny of the literature data on V₂O₅/TiO₂ (40, 41, 42, and references therein) that evidences dramatic changes in the spectral shape according to the nature of the support (anatase, rutile, amorphous phases) and the location of vanadylic groups (surface, reticular, interstitial). Furthermore, a comparison of the spectrum of the V₂O₅-WO₃/TiO₂ sample (Fig. 4a) with that of a binary V₂O₅/TiO₂ reference

sample (Fig. 4b) indicates that the single isolated species present in the binary sample is practically coincident with species I in Fig. 4a. The similarity of the VO²⁺ ions present on the binary reference samples and on the ternary ones indicates that in these systems the vanadium oxide phase primarily interacts with titanium oxide. The difference between the binary and the ternary samples is, however, not only quantitative (different amounts of tetravalent vanadium) but also qualitative in that the ternary samples only show two families of vanadyl ions with similar but distinct spin-Hamiltonian parameters. The presence of two types of isolated vanadylic VO²⁺ groups seems to be typical of the investigated ternary systems.

The role and even the presence in significant amounts of V(IV) in the vanadia monolayer of TiO_2 -supported systems have been the object of a long debate in the literature. While several authors, on the basis of EXAFS, TPR, and XPS data (43–46), concluded that pentavalent vanadium is the only component of the overlayer on TiO_2 , other authors showed the presence of nonnegligible amounts of vanadium(IV) (47, 48, 49). The existence of both V(IV) and V(V) is in line with the data of Jonson *et al.* (50), who refer to $V^{4+}-V^{5+}$ as the active redox couple in vanadia/titania samples.

The highly sensitive EPR technique has been quite extensively used in the study of vanadia/titania systems and a quite large number of papers are available that report EPR spectra of V(IV) on various, and variously treated, V_2O_5/TiO_2 systems (42 and references therein, 51-54). This technique, is not widely used for quantitative measurements. Accordingly, while the presence of V(IV) in V₂O₅/TiO₂ is generally accepted, its quantitative evaluation by EPR is not an easy task and has been attempted, to our knowledge, only by Rusiecka et al. (53), who reported some 6% V(IV) in a vanadia on anatase sample with 1.2% V₂O₅ loading. Taking into account the poor accuracy of the EPR quantitative measurements, this value can be considered in agreement with data indicating roughly 15% V(IV) derived with analytical titrimetric methods by the same group (55) and other authors (54).

An explicit and precise evaluation by EPR of the content of V(IV) in the ternary V_2O_5 -WO $_3$ /TiO $_2$ is not among the aims of the present paper. However, preliminary comparison of the spectral intensity of the ternary system with those of frozen solutions of vanadyl acetilacetonate in toluene shows that the observed V(IV) should be around 8–10% of the total vanadium in the samples. This result indicates that despite the observation that V(IV) is a minor fraction of the total vanadium in the system, its concentration can be considered high enough for an adequate probe of the structural features of the V ions anchored at the surface. A further difference between ternary and binary V_2O_5 /TiO $_2$ samples is observed upon outgassing at 823 K. After this treatment the tuning of

the spectrometer was practically impossible in the case of V_2O_5 – WO_3 / TiO_2 (and of TiO_2 and WO_3 / TiO_2 as well) because the concentration of quasi-free electrons in the samples exceeded a limiting value. By comparison, in the case of V_2O_5 / TiO_2 samples the EPR spectra could be monitored even after outgassing at this temperature.

4. UV-vis Diffuse Reflectance

4.1. Calcined samples. The UV-vis DR spectra of TiO₂, WO₃/TiO₂, V₂O₅/TiO₂, and V₂O₅-WO₃/TiO₂ samples are presented in Fig. 5.

The spectrum of pure TiO_2 is dominated by the edge relative to the $O^{2-} \rightarrow Ti^{4+}$ charge transfer to TiO_2 anatase at 320-350 nm.

The WO_3/TiO_2 sample shows an additional broad absorption near 430 nm. This absorption is responsible for the pale yellow color of the samples and it can be due to $O^{2-} \rightarrow W^{6+}$ charge transfer transition, as in the case of monoclinic WO_3 (56), or to a perturbation of the TiO_2 edge by surface tungsten oxide species. The absence of significant absorptions in the visible region due to d-d transition points to the absence of reduced W species with respect to the d^0 hexavalent state of W^{6+} .

The spectra of V_2O_5/TiO_2 samples show a strong additional absorption at 410 nm and an additional absorption in the whole visible region with maximum at 670 nm; both absorptions increase with V_2O_5 loading. These bands have been associated with the presence of V^{4+} in the form of VO^{2+} species (9); the band at 410 nm can also be explained as due to a perturbation of the TiO_2 edge by surface vanadium oxide species.

The spectra of V₂O₅-WO₃/TiO₂ samples show absorptions at 410 and 520 nm and an absorption extending in

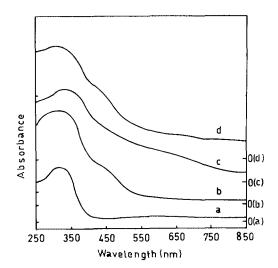


FIG. 5. UV-vis DR spectra of calcined TiO₂ (a), WO₃(9)/TiO₂ (b), $V_2O_5(1.4)/TiO_2$ (c), and $V_2O_5(1.4)-WO_3(9)/TiO_2$ (d), with BaSO₄ as reference.

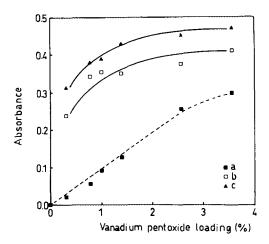


FIG. 6. Intensity of the absorptions at 520 nm in UV-vis DR spectra as a function of the V_2O_5 content for calcined (a) and reduced V_2O_5 -WO₃/TiO₂ samples after 16 h outgassing (b) and 32 h outgassing (c). The spectra were taken with WO₃/TiO₂ as reference.

the whole visible region. All of these absorptions are more intense in V₂O₅-WO₃/TiO₂ samples than in WO₃/TiO₂ and V₂O₅/TiO₂ samples with similar metal loadings. The intensity of the absorption at 520 nm, with WO₃/TiO₂ as a reference, increases linearly with the V₂O₅ content up to the (W + V) monolayer coverage value ($V_2O_5 \sim 2.5\%$ w/w), as shown in Fig. 6. This absorption in principle can be associated either with d-d transitions of reduced V and/or W cations or with a $O^{2-} \rightarrow V^{5+}$ charge transfer. The absorption in the visible region is similar to that found on reduced TiO₂ (57) and is due to the presence of quasifree electrons. However, that all these features are higher in intensity in V₂O₅-WO₃/TiO₂ than in the corresponding WO₃/TiO₂ and V₂O₅/TiO₂ samples indicates that a specific electronic interaction occurs between W and V oxide species, possibly involving the support.

4.2. Outgassed samples. The UV-vis DR spectra of V_2O_5 -WO₃/TiO₂ samples outgassed for 16 h and 32 h were recorded in situ at r.t. The color of the samples was much darker (almost black), and absorptions more intense than in the case of the calcined samples were measured in the whole visible region and particularly at 520 nm (Fig. 6). Under the same experimental conditions. The additional absorption extending in the whole visible region was observed to a much lower extent in the case of WO₃/TiO₂ (with a broad maximum at 530 nm) and to an even lower extent in the case of TiO₂; it has not monitored for the correspondent V_2O_5 /TiO₂ samples.

These results are in line with the previous interpretation of the above absorptions as due to the presence of quasifree electrons and to d-d transitions of reduced V and/ or W oxide species. The growth of these absorptions upon outgassing of the ternary catalysts can be explained by a reduction of the catalyst. It is in fact well known that

TiO₂ increases its *n*-type semiconductor properties due to oxygen deficiency upon reduction and/or outgassing (e.g., at 673 K and 10⁻⁴ Torr for 1 h) [57]. Reduced titanium oxides have been characterised recently and are found to be dark in colour and to present a continuous absorption in the visible region [58] as well as a higher absorption in the IR region (57). These absorptions are likely due to transitions involving nearly free electrons, i.e., electrons placed in delocalised orbitals or in the conduction band. At low temperature (e.g., 77 K) the electrons can be trapped in localized orbitals, originating typical EPR signals of Ti³⁺. WO₃/TiO₂ presents a similar behavior whereas V₂O₅/TiO₂ shows a higher tendency to localise electrons at vanadium centers, giving rise to V⁴⁺ ions. The behavior of V₂O₅-WO₃/TiO₂ is similar to that of WO₃/TiO₃ but shows an easier reducibility. Besides, when the temperature and/or the degree of reduction are low the electrons are essentially trapped at vanadium centers.

5. Vibrational Studies

The FTIR spectra in Fig. 7 and the Laser Raman spectra in Fig. 8 of the supported species arising from V_2O_5 and WO_3 components in the ternary and binary catalysts are

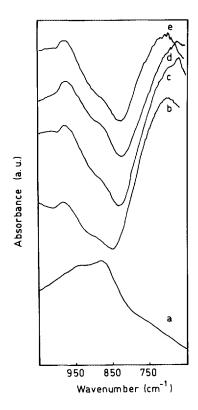


FIG. 7. FTIR spectra of the supported phases (KBr pressed disks, support spectrum subtracted) of $V_2O_5(1.4)/TiO_2$ (a), $WO_3(9)/TiO_2$ (b), $V_2O_5-WO_3(9)/TiO_2$ samples with $V_2O_5=0.3\%$ w/w (c), 1.0% w/w (d), and 1.4% w/w (e).

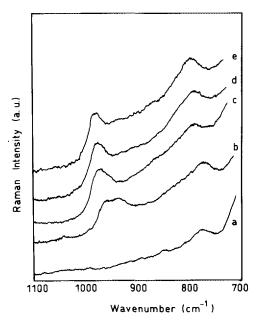


FIG. 8. Laser Raman spectra of calcinated TiO_2 (a), $V_2O_5(1.4)/TiO_2$ (b), $WO_3(9)/TiO_2$ (c), $V_2O_5(0.3)-WO_3(9)/TiO_2$ (d), and $V_2O_5(1.4)-WO_3(9)/TiO_2$ (e).

reported in the 1100-700 cm⁻¹ range. The IR spectra (Fig. 7) have been taken in contact with air and KBr pressed disks and the spectrum of the TiO₂ support has been subtracted. The Raman spectra (Fig. 8) have been taken in air using the pure powders. In this spectral region the pure anatase support absorbs strongly below 800 cm⁻¹ but does not show any IR maximum down to 450 cm⁻¹. In the Raman spectra of anatase TiO₂ only a weak overtone is detected at 790 cm⁻¹ (Fig. 8a). Figure 9 shows the FTIR spectra of pure powder pressed disks of the binary and ternary catalysts after outgassing at 573 K. The spectrum of the TiO₂ support has been subtracted in this case also.

The IR spectra of the binary V₂O₅/TiO₂ catalysts corre-

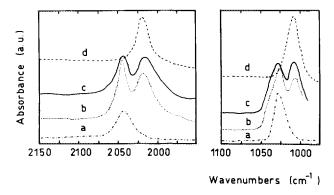


FIG. 9. FTIR spectra of pure pressed disks after outgassing at 573 K for 15 min. Fundamental and overtone regions are shown. (a) $V_2O_5(1.4)/TiO_2$, (b) $V_2O_5(1.4)-WO_3(9)/TiO_2$, (c) $V_2O_5(0.3)-WO_3(9)/TiO_2$, and (d) $WO_3(9)/TiO_2$. The absorbance scales on the right are about 10 times those on the left.

spond to those already reported by our group (16, 17, 33, 59) and by other groups (14, 15, 18, 32). Two broad IR bands are found near 950 and 880 cm⁻¹. The Raman spectrum shows a broad peak, possibly split, with components near 980 and 950 cm⁻¹, and a very broad scattering in the region 950–700 cm⁻¹ with a maximum near 790 cm⁻¹ corresponding to the TiO₂ overtone peak cited above.

The higher frequency IR and Raman features (1000–940) cm⁻¹), the maximums of which shift slightly upwards on increasing the vanadium content, both in IR (33, 59) and in Raman (32), are assigned to the V=O stretching mode of vanadyl species in a hydrated form (16, 17). In dry conditions the same mode is observed at 1035 (fundamental) and 2045 cm⁻¹ (first overtone), with the former detectable also by Raman spectroscopy (16, 17, 32). The lower frequency features have been assigned to the highest frequency V-O stretching mode of metavanadate species (33). This assignment is based also on the Raman spectrum reported by Went et al. (15) in anhydrous conditions, which shows a sharper band in the region 915-930 cm⁻¹, and on a detailed analysis of the IR and Raman spectra of bulk Mg-vanadates (including Mg metavanadate), which show that metavanadate species are characterised mainly by V-O stretching modes responsible for a strong IR band at 888 cm⁻¹ and a strong Raman peak at 923 cm⁻¹ (60). So, the surface vanadium oxide species appear to be constituted essentially by monomeric vanadyl species and by metavanadate-type polymeric species. It is worth nothing that the coordination of vanadium in metavanadate species can change from essentially tetrahedral, like in ammonium metavanadate, to nearly octahedral, like in the "brannerite-type" metavanadates (as MgV₂O₆).

The data and assignments discussed above substantially agree with those already reported by Wachs and co-workers (26, 32, 61), Bell and co-workers (14, 15, 18), and other authors (45, 62) using Raman spectroscopy; they also agree with those reported by a number of authors using IR spectroscopic techniques (11, 47, 63-67).

The IR spectrum of the WO₃/TiO₂ sample in ambient conditions shows a relatively weak absorption near 980 cm⁻¹ and a much stronger one near 700 cm⁻¹. The corresponding Raman spectrum shows a prominent broad peak near 980 cm⁻¹ and a very broad scattering at lower frequencies, with a peak maximum at 800 cm⁻¹. According to Vuurman et al. (32) this second maximum grows strongly as a function of tungsten loading and should consequently be associated with surface tunsten oxide species. According to previous data (20) the peaks at 980 cm⁻¹ in both IR and Raman spectra are associated to the W=O stretching of wolframyl species. This mode is detected near 1015 cm⁻¹ by both IR and Raman spectroscopies (32) in the case of outgassed dry samples, when the wolframyl species are in a dehydrated form. The lower frequency modes (800 cm⁻¹ in the Raman spectrum, 700

cm⁻¹ in IR) are associated to W-O stretching modes of structures similar to WO₃ or their hydrates, like WO₃·H2O (68). The position of these bands, according to the data collected by Stencel (69), should correspond to species where tungsten is in an octahedral environment with no W=O double bonds (as in the case of WO₃ polymorphs too). These species are also likely to be associated with weak Raman peaks observed at the lower frequencies, typically associated with deformation modes of W-O-W bonds, i.e., at 324 and 273 cm⁻¹.

The IR spectra of the ternary V_2O_5 -WO₃/TiO₂ samples are similar to those of the binary WO₃-TiO₂ samples, in line with the relatively high WO3 content and the low V₂O₅ content. Accordingly, two main IR absorptions are evident at 980 cm⁻¹ and near 700 cm⁻¹, together with a broad absorption near 880 cm⁻¹ that is more pronounced at high V loadings. The Raman spectra of ternary V₂O₅-WO₃/TiO₂ samples show again a broad peak at 980 cm⁻¹ and very broad scattering centered near 800 cm⁻¹. The higher frequency IR and Raman features are both associated with W=O and V=O stretchings of monomeric wolframyl and vanadyl species that are superimposed on each other. We note that the band at 950 cm⁻¹ associated with the V-O stretching mode of metavanadate species, which is very evident in the V₂O₅/TiO₂ sample, is present in the ternary catalysts as a shoulder because in wet conditions it is partially covered by the W=O and V=O stretchings of monomeric wolframyls and vanadyls.

Interestingly, when the samples are outgassed the V=O and W=O stretching modes split clearly (see Fig. 9 for the IR fundamental and overtone modes) and their positions are virtually the same as in binary V₂O₅/TiO₂ and WO₃/TiO₂ samples, respectively. This datum was interpreted by us as evidence of the mutual vibrational and structural independence of isolated vanadyl and wolframyl centers (30, 70) and it has also been confirmed by Vuurman et al. (32) using Raman spectroscopy in dry conditions. In the IR spectra, the lower frequency features in ternary systems are similar to those observed in binary WO₃/TiO₂ and should be taken as evidence of the presence of polymeric wolframate species. Also, we note that for the sample with higher V_2O_5 loading $(V_2O_5(1.4)-WO_3(9)/TiO_2)$ the IR band near 700 cm⁻¹ shifts slightly towards higher frequencies upon increasing the vanadia content. This could be interpreted by hypotizing the formation of mixed W_xV_yO_z polymeric species. In fact, the presence of vanadium in $W_x V_y O_z$ polymeric species can result in a shift of metal-oxygen stretching modes as compared to W_xO_y species, due to its lower molecular weight. The low-frequency modes near 320 and 270 cm⁻¹ (see above) are apparently not affected by vanadium.

Another interesting feature is the presence of a weak absorption with a maximum near 880 cm⁻¹ that is more evident in the samples with higher vanadium content. This

feature could be due to small amounts of metavanadate species.

Additional information can be obtained by comparing the FT-Raman spectra of the pure support and of the binary and ternary samples in the overall spectral region (1200-100 cm⁻¹). In Fig. 10 the FT-Raman spectra of the support TiO₂ and of the V₂O₅/TiO₂, WO₃/TiO₂, and V₂O₅-WO₃/TiO₂ catalysts are shown for before and after outgassing at 473 K for 3 h. The features assigned above to surface vanadium oxide and tungsten oxide species (essentially centered in the ranges 1000-700 cm⁻¹ and 350-250 cm⁻¹) will not be evidenced or discussed further. The support spectrum shows five peaks at 638, 515, 396, 196, and 143 cm⁻¹, due to the six Raman active fundamentals of anatase, two of which are superimposed at 515 cm⁻¹ (71, 72). Outgassing only causes a slight weakening of the absolute peak intensity and a slight increase of the baseline at the high frequency side. The spectrum of the V₂O₅(1.4)/TiO₂ catalyst shows the same anatase peaks, without any shift but weakened by a factor near 7. Outgassing causes a further slight weakening of the anatase peaks and an increase of the baseline at the higher frequencies similar to that observed in the case of pure TiO₂. The spectrum of WO₃/TiO₂ shows the anatase peaks weakened by a factor 4.5. Outgassing causes a spectacular decrease in the intensity of the anatase peaks by a factor 12 and the line base shows an increase similar to the previous ones, emphasized by the scale expansion in the figure. The spectrum of the ternary oxide V₂O₅(1.4)-WO₃(9)/TiO₂ again shows the anatase peaks but they are dramatically decreased, by a factor 100 in

comparison with those with pure TiO₂. In the spectrum recorded after outgassing the anatase peaks almost disappear, but this is only in part due to a further decrease in their intensity (which is almost constant); it is also due to an increase of the Raman scattering baseline.

The above Raman experiments provide evidence for three effects that are at least partially independent of each other, namely:

- (i) The decrease in the anatase peak intensities in supported metal oxides is observed in all cases but most pronounced in the case of the $V_2O_5(1.4)-WO_3(9)/TiO_2$ catalyst. This effect, first reported for V_2O_5/TiO_2 (45) has also been found to be very pronounced in the cases of MoO_3/TiO_2 and CuO/TiO_2 (72) and much weaker, but significant, in the case of SiO_2/TiO_2 samples (73).
- (ii) The anatase peak intensities decrease upon outgassing; the decrease is most evident in the case of the WO₃/TiO₂ catalyst. A complete loss of Raman scattering by reduction has been reported previously for rutile (74).
- (iii) The increase of the Raman scattering baseline by outgassing is observed and is again most evident for the ternary catalysts.

This last effect can be associated with the appearance of broad absorption bands also in the IR spectra upon outgassing. Indeed for all the investigated catalysts (including TiO₂) outgassing at 573 K causes the almost complete loss of light transmission by the sample in the region below 3000 cm⁻¹, which is restored completely upon calcination. This effect is similar on all the above catalysts

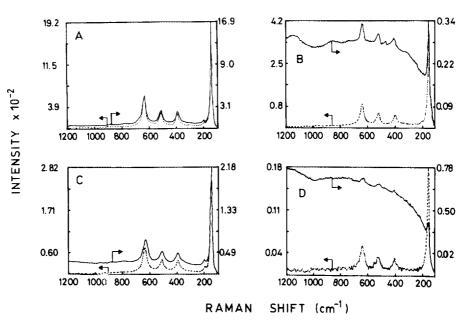


FIG. 10. FT-Raman spectra of calcined (dotted lines) and outgassed (solid lines) TiO_2 (A), $WO_3(9)/TiO_2$ (B), $V_2O_5(1.4)/TiO_2$ (C), and $V_2O_5(1.4)-WO_3(9)/TiO_2$ (D).

but it occurs at much lower temperatures when W is present. This absorption necessarily involves the promotion of some electrons to the TiO₂ conduction band.

As for the first two effects, it is known that Raman scattering can be weakened (or broadened) and even lost due to the following different factors:

- (i) Increased disorder. Indeed, the strength and sharpness of the Raman scattering peaks in bulk powders have been related by some authors to their degree of crystallinity (76). The possible role of surface disorder on "monolayer" catalyst surfaces in reducing Raman scattering has already been proposed by some of us (72, 73) but it is certainly not sufficient to explain the strong effects observed in the present cases.
- (ii) Increased absorption of the exciting radiation is observed, with a consequent decrease in the intensity of the (Raman) scattered light (75). This also leads to temperature broadening that arises from heating due to the increased absorption of the exciting radiation. Working with a visible (Ar) laser, Bond and co-workers (45) first reported the effect of weakening the anatase Raman peaks in the case of V₂O₅/TiO₂ catalysts and attributed it to the increased absorption of the laser light with increased V₂O₅ content. However, this effect is observed using both a visible laser (Ar) and the near-IR laser (Nd YAG) of FT-Raman instruments. This effect does not seem strictly or solely correlated to the absorption of the laser light because, while CuO-TiO₂ and V₂O₅/TiO₂ (both of which show this strong effect) also absorb more than TiO₂ in the NIR region, this is not the case for calcined WO₃/TiO₂ or SiO₂/TiO₂ (which show this effect too, although it is weaker). Moreover, calcined V₂O₅-WO₃/TiO₂ catalysts, with which this effect is most pronounced, do not absorb more than V_2O_5 -TiO₂ in the NIR region.
- (iii) More complex solid-state phenomena like phonon-plasmon couplings.

DISCUSSION

The results in Fig. 1 and Table 1 show that the presence of large amounts of tungsten ($\sim 9\%$ w/w) are essential to preserve the structural and morphological properties of WO₃/TiO₂ samples upon addition of vanadia, provided that the (W + V) surface coverage is lower than one. In this case the samples are monophasic and consist of the anatase polymorphic form of TiO₂. Traces of rutile and V₂O₅, but not WO₃ or bulk V₂O₅/WO₃, are detected upon increasing the calcination temperature above 823 K and for high vanadia loadings, when the (W + V) coverage is close to or larger than that of the theoretical monolayer. On the other hand, when the WO₃ loading is kept low, a significant sintering of the catalyst is observed upon addition of V₂O₅.

The structure of the vanadium and tungsten oxide surface species present over the ternary V_2O_5 - WO_3 / TiO_2 catalysts with high tungsta content (~9% w/w) has been investigated by FTIR and laser Raman spectroscopies. Monomeric vanadyls and wolframyls, similar to those present on the surface of the binary oxide systems with comparable metal loadings, are observed over the samples with low V_2O_5 loadings. Indeed the positions of the V=O and W=O stretching modes in the ternary catalysts are virtually the same as in the binary V₂O₅/TiO₂ and WO₃/ TiO₂ samples, respectively. The fundamental v(V=O)stretching mode is detected at 980 cm⁻¹ in wet conditions and at 1030 cm⁻¹ in dry conditions in both the IR and Raman spectra, and the first overtone 2v(V=0) is observed at 2045 cm⁻¹ in dry conditions in IR spectra. The v(W=0) stretching mode is monitored at 980 cm⁻¹ in wet conditions and near 1020 cm⁻¹ in dry conditions in both IR and Raman spectra, and the first overtone 2v(W=O) is observed at 2020 cm⁻¹ in dry conditions in the IR spectra. These results confirm the mutual structural and vibrational independence of the isolated vanadyl and wolframyl centers in the ternary catalysts. In addition to monomeric vanadyls and wolframyls the presence of polymeric W_xO_y species, similar to those observed in the binary WO₃/TiO₂ sample, is revealed by the IR band near 700 cm⁻¹ and by the Raman bands at 800, 324, and 273 cm⁻¹. On increasing the vanadium content, polyvanadate species are also formed, characterised by the IR band at 880 cm⁻¹ and the Raman band at 950 cm⁻¹. Besides, slight evidence for the presence of mixed $W_x V_y O_z$ species, where Vanadium is dispersed within the W-O-W chains of W_rO_v, comes from the shift towards higher frequency observed for the IR band associated with W_xO_y species and observed at 700 cm⁻¹ in WO₃/TiO₂. The formation of the mixed W_rV_vO₂ species implies a structural interaction between V and W centers over the TiO₂ surface.

Additional structural information on the surface V species comes from EPR spectroscopy. Preliminary quantitative evaluation by EPR indicates that 8-10% of the total vanadium in the ternary samples is present as V(IV), which appears to be enough for an adequate probe of the structural features of the reduced ions anchored at the surface of the support. The tetravalent vanadium ions are present in vanadyl forms, as indicated by the g and Avalues discernable from the EPR spectra; two families of magnetically isolated vanadylic ions and more clustered magnetically interacting ions are present at the surface. The spin-Hamiltonian parameters of isolated species suggest that the vanadylic ions are primarily stabilised through interaction with the titania surface rather than with the tungsta. However, only one of the two families of isolated VO²⁺ ions present in the ternary samples has been observed over the binary V₂O₅-TiO₂ samples. These results suggest that in spite of the structural and vibra-

tional independence of the isolaed V and W surface species present in the ternary V_2O_5 – WO_3 / TiO_2 samples, tungsta plays a role in determining both the amount and the properties of the surface vanadyl ions in the ternary catalysts.

EPR, UV-vis, and laser-Raman spectroscopies converge in indicating a strong electronic interaction between V and W oxide surface species and the TiO₂ support. Indeed, WO₃/TiO₂ easily loses oxygen by outgassing and, when slightly reduced, shows the typical behavior of an n-type semiconductor, i.e., quasi-free electrons, easily promoted to the TiO₂ conduction band, are produced. This interpretation is supported by the detection of a broad absorption extending from the UV to the IR region, by the impossibility of recording EPR spectra in the case of outgassed WO₃/TiO₂, and by the increase of the Raman scattering baseline upon outgassing due to excessive amounts of quasi-free electrons. The same phenomena occurs, but only under much more drastic conditions, in the case of pure TiO₂. On the contrary, V centers in slightly reduced V₂O₅/TiO₂ seem to trap electrons, giving rise to V⁴⁺ centers, well-evidenced by EPR and possibly by the d-d absorptions essentially localised in the UV-visible regions. When V₂O₅ is added to WO₃/TiO₂ the production of quasi-free electrons is already made easier on calcined samples, and it becomes even more so after outgassing so that the EPR spectra cannot be recorded, a strong absorption extending in the whole visible region is observed, and the anatase Raman peaks are very strongly weakened. This electronic interaction eventually accounts for a greater reducibility of the ternary samples as compared to the binary ones so that the EPR spectra of the calcined ternary samples are more intense by one order of magnitude.

The V_2O_5 -WO₃/TiO₂ catalysts exhibit higher reactivity in the selective catalytic reduction of NO by NH₃ than the corresponding binary V_2O_5 /TiO₂ catalysts; the ternary catalysts are active at lower temperatures and high selectivities to N_2 are preserved in the high-temperature region. As a result, the temperature window for the SCR reaction, corresponding to high NO_x conversion and complete selectivity to N_2 , is greatly widened. Calculations have shown that the reactivity of V and/or W over the ternary samples, identified in terms of specific rates of reaction according to Eq. [1], is greater than that measured over the corresponding binary system, which eventually indicates the existence of a synergism between V and W oxide species in the SCR reaction.

Although the formation of larger amounts of highly reactive polyvanadate species in the ternary samples, due to the decrease in the TiO₂ surface area which is available for vanadium, is neither confirmed nor excluded by our vibrational study, calculations indicate that this does not

fully account for the increase in the catalytic activity. Furthermore, the presence of highly reactive polyvanadate species is also accompanied by lower selectivity to N_2 in the SCR reaction (18, 19), which, however, is not observed over the V_2O_5 -WO $_3$ /TiO $_2$ catalysts.

The higher reactivity of the ternary catalysts can be associated with the existence of strong electronic interactions between V and W oxide surface species revealed by EPR, UV-vis and Raman spectroscopies. In fact, it has been observed that this leads to a different reducibility of the samples. Along these lines, recent TPSR/TPR experiments performed in our laboratories in the presence and in the absence of oxygen confirmed that the ternary cataysts can be reduced at lower temperatures, due to the participation of labile lattice oxygen atoms in the DeNO_x SCR reaction, and can be reoxidized more easily by gaseous oxygen (77). Accordingly, the higher reactivity of the ternary catalysts with respect to the corresponding binary samples can be related to their superior redox properties.

The electronic interaction between V and W oxide surface species may occur through oxygen bridging of the polyhedra and/or through the conduction band of TiO₂. The former possibility is consistent with the formation of mixed $W_x V_y O_z$, species and with the detection of relatively isolated VO²⁺ ions that are slightly different from those monitored over V₂O₅/TiO₂ by EPR. Considering that the active sites for SO₂ oxidation have been envisaged as dimeric vanadyls and that this reaction is favoured by high degrees of oxidation of the active sites (4), a more controlled extent of reduction of the V oxide species and/ or the dispersion of vanadium ions within polymeric W, O, groups at the surface of titania may likely account for low conversions in SO₂ oxidation and for high activities in NO₂ reduction as well. These catalytic properties are indeed common to all commercial DeNO_x SCR catalysts.

Other factors, however, must be considered when comparing the reactivities in the SCR reaction of the ternary and binary catalysts. For example, several authors assign Brønsted acid sites a pivotal role in the DeNO, reaction (78 and references therein). There is no doubt that the addition of tungsten significantly increases the surface acidity of V₂O₅/TiO₂ catalysts. This was also confirmed by recent TPSR and TPR experiments performed over the catalysts used in the present work (77). However, as pointed out by the catalytic activity runs shown in Fig. 2, the ternary samples already show significant activity at low temperatures, where the reactivity of the samples is not controlled by adsorbed ammonia but is likely governed by the mobility of the catalyst lattice oxygen. Thus it is believed that the catalyst redox properties, rather than surface acidity, is the factor that controls the reactivity of the samples, at least at low temperatures. However, at high temperatures the surface acidity certainly plays an important role in the adsorption and activation of ammonia.

CONCLUSIONS

The following main conclusions have been obtained in the present study performed over V₂O₅-WO₃/TiO₂ DeNO₃ catalysts:

- (i) Monophasic materials with high surface areas are obtained for large tungsta contents (WO₃ = 9% w/w) and (V + W) surface coverages lower than one ($V_2O_5 < 2.56\%$ w/w).
- (ii) Monomeric vanadyls and wolframyls and polymeric W_xO_y groups are observed in the submonolayer samples and are apparently similar to those observed over the binary catalysts. Polyvanadate species are also observed at high vanadia contents. Mixed $W_xV_yO_z$ species, where vanadium is dispersed within the W-O-W chains of W_xO_y , and relatively isolated VO^{2+} ions slightly different from those monitored over V_2O_5/TiO_2 are also observed in the ternary catalysts.
- (iii) A strong electronic interaction operates between V and W oxide surface species and the TiO₂ support, which results in a higher reducibility of the ternary catalysts with respect to the corresponding binary samples. The electronic interactions lead the formation of free electrons and may operate through oxygen bridging of the polyhedra and/or through the conduction band of the anatase TiO₂ support.
- (iv) The ternary catalysts are more active than the corresponding binary ones because a synergism operates between V and W oxide species in the SCR reaction. This can be eventually related to the strong electronic interactions between V and W oxide surface species and the TiO₂ support and, accordingly, to the higher reducibility of the ternary samples.

ACKNOWLEDGMENTS

This work was performed under contract with ENEL/DSR/CRTN Milano. The financial support of CNR-attività di comitato is also acknowledged.

REFERENCES

- 1. Bosch, H., and Janssen, F., Catal. Today 2, 369 (1988).
- Inomata, M., Mori, K., Myiamoto, A., Ui, T., and Murakami, Y., J. Phys. Chem. 87, 754 (1983).
- 3. Svachula, J., Ferlazzo, N., Forzatti, P., Tronconi, E., and Bregani, F., Ind. Eng. Chem. Res. 32, 1053 (1993).
- Svachula, J., Alemany, L. J., Ferlazzo, N., Forzatti, P., Tronconi, E., and Bregani, F., Ind. Eng. Chem. Res. 32, 826 (1993).

- Andersson, A., and Andersson, S. L. T., in "Solid State Chemistry in Catalysis" (R. K. Grasselli and J. F. Brazdil, Eds.), p. 121. ACS, Washington, 1985.
- Gellings, P. J., in "Catalysis," Vol. 7, p. 105. Royal Society of Chemistry, London, 1985.
- 7. Haber, J., Kozlowska A., and Kozlowski, R., *J. Catal.* **102,** 52 (1986).
- 8. Vejoux A., and Courtine, P., J. Solid State Chem. 63, 179 (1986).
- 9. Busca, G., Tittarelli, P., Forzatti, P., and Tronconi, E., J. Solid State Chem. 67, 91 (1987).
- Cavani, F., Foresti, E., Parrinello, G., and Trifirò, F., Appl. Catal. 38, 311 (1988).
- Hausinger, G., Schmelz, H., and Knozinger, H., Appl. Catal. 39, 267 (1988).
- 12. Bond, G. C., Flamers, S., and Shukri, R., Faraday Discuss. Chem. Soc. 87, 65 (1989).
- 13. Eckert, H., and Wachs, I. E., J. Phys. Chem. 93, 6796 (1989).
- Went, G. T., Oyama, S. T., and Bell, A. T., J. Phys. Chem. 94, 4240 (1990).
- 15. Went, G. T., Leu, L.-J., and Bell, A. T., J. Catal. 134, 479 (1992).
- 16. Cristiani, C., Busca, G., and Forzatti, P., J. Catal. 116, 586 (1989).
- Ramis, G., Cristiani, C., Forzatti, P., and Busca, G., J. Catal. 124, 574 (1990).
- 18. Went, G. T., Leu, L.-J., Rosin, R. R., and Bell, A. T., J. Catal. 134, 492 (1992).
- 19. Lietti, L., and Forzatti, P., J. Catal. 147, 241 (1994).
- 20. Ramis, G., Busca, G., Cristiani, C., Lietti, L., Forzatti, P., and Bregani, F., Langmuir 8, 1744 (1992).
- Cristiani, C., Bellotto, M., Forzatti P., and Bregani, F., J. Mater. Res. 8, 2019 (1993).
- 22. Lietti, L., Svachula, J., Forzatti, P., Busca, G., Ramis, G., and Bregani, F., Catal. Today 17, 131 (1993).
- 23. Bell, A. T., and Carberry, J. J., Catal. Rev. Sci. Eng. 27, 1 (1985).
- Hilbrig, F., Schmelz, H., and Knozinger, H., in "New Frontiers in Catalysis" (L. Guczi, F. Solymosi, P. Téténi, Eds.), p. 1351. Elsevier, Amsterdam/New York, (1993).
- Bond, G. C., Flamerz, S., and Wan Wijk, L., Catal. Today 1, 229 (1987).
- Wachs, I. E., and Hardcastle, E., "Proceedings, 9th International Congress on Catalysis, Calgary, 1988," (M. J. Philips and M. Ternan, Eds.), Vol. 3, p. 1449. Chem. Institute of Canada, Ottawa, 1988.
- Imanari, I., Watanabe, Y., Matsuda, S., and Nakajima, F., "Proceedings, 7th International Congress on Catalysis, Tokyo 1980" (T. Seiyama and K. Tanabe, Eds.), Elsevier, Amsterdam, 1981.
- 28. Hilbrig, F., Gobel, H. E., Knozinger, H., Schmelz, H., and Lengeler, B., *J. Phys. Chem.* **95**, 6973 (1991).
- Morikawa, S., Takahashi, K., Mogi, J., and Kurita, S., Bull. Chem. Soc. Japan 55, 2254 (1982).
- 30. Ramis, G., Busca, G., and Forzatti, P., Appl. Catal. B Environ. 1, L9-L13, (1992).
- 31. Chen, J. P., and Yang, R. T., Appl. Catal. A Gen. 80, 135 (1992).
- 32. Vuurman, M. A., Wachs, I. E., and Hirt, A. M., J. Phys. Chem. 95, 9982 (1991).
- 33. Lietti, L., Forzatti, P., Ramis, G., Busca, G., and Bregani, F., Appl. Catal. B Environ. 3, 13 (1993).
- 34. Deo, G., and Wachs, I. E., J. Catal. 146, 335 (1994).
- 35. Deo, G., and Wachs, I. E., J. Catal. 146, 323 (1994).
- 36. Vermaire, D. C., and van Berge, P. C., J. Catal. 116, 309 (1989).
- 37. Bond, G. C., and Tahir, S. F., Appl. Catal. 71, 1 (1991).
- 38. Wong, W. C., and Nobe, K., Ind. Eng. Chem. Prod. Res. Dev. 23, 564 (1984).
- Goodman, B. A., and Raynor, J. B., Adv. Inorg. Chem. Radiochem.
 13, 188 (1970).

- 40. Davidson, A., and Che, M., J. Phys. Chem. 96, 9909 (1992).
- Busca, G., Marchetti, L., Centi, G., and Trifirò, F., Langmuir 2, 568 (1986).
- 42. Busca, G., and Giamello, E., Mater. Chem. Phys. 25, 475 (1990).
- 43. Eckerdt, H., Wachs, I. E., J. Phys. Chem. 93, 6796 (1989).
- 44. Kozlowski, R., Pettifer, R. F., and Thomas, J. M., J. Phys. Chem. 87, 5176 (1983).
- Bond, G. C., Zurita, J. P., Flamerz, S., Gelling, P. J., Bosch, H., van Ommen, J. G., and Kip, B. J., Appl. Catal. 22, 361 (1986).
- Eckerdt, H., Deo, G., Wachs, I. E., and Hirt, A. M., Colloids Surf. 45, 347 (1990).
- 47. Turco, M., Bagnasco, G., Lisi, L., and Ciambelli, P., J. Therm. Anal. 38, 2631 (1992).
- 48. Pereira, E., Gambaro, L. A. and Thomas, H. J., Transition Met. Chem. 5, 139 (1980).
- 49. Andersson, S. L. T., Catal. Lett. 7, 351 (1990).
- Jonson, B., Rebenstorf, B., Larsson, R., and Andersson, S. L. T.,
 J. Chem. Soc. Faraday Trans. 1 84, 3547 (1988).
- Mériaudeau, P., and Vedrine, J. C., Nouv. J. Chim. 2, 133 (1978).
- Gallay, R., van der Klink, J. J., and Moser, J., J. Phys. Rev. 34, 3060 (1986).
- 53. Rusiecka, M., Grzybowska, B., Appl. Catal. 10, 87 (1984).
- Sanati, M., Wallenberg, R., Andersson, A., Jansen, S., and Tu, Y., J. Catal. 132, 128 (1991).
- Gasior, M., Gasior, I., and Grzybowska, B., Appl. Catal. 10, 87 (1984).
- Ramis, G., Cristiani, C., Elmi, A. S., Villa, P. L., Busca, G., J. Mol. Catal. 61, 319 (1990).
- 57. Busca, G., and Zecchina, A., Catal. Today 3, 61 (1994).
- 58. Ookubo, A., Kanezaki, E., and Ooi, K., Langmuir 6, 296 (1990).
- Oliveri, G., Ramis, G., Busca, G., and Sanchez Escribano, V., J. Mater. Chem. 3, 1239 (1993).

- 60. Busca, G., Ricchiardi, G., Siew Hew Sam, D., and Volta, J. C., J. Chem. Soc. Faraday Trans. 90, 1161 (1994).
- 61. Wachs, I. E., J. Catal. 124, 570 (1990).
- Roozenboom, F., Mittelmeijer-Hazeleger, M. C., Moulijn, J. A., Medema, J., DeBeer, V. H. J., and Gellings, P. J., J. Phys. Chem. 84, 2783 (1980).
- 63. Andersson, A., J. Catal. 76, 144 (1982).
- 64. Bond, G. C., and Konig, P., J. Catal. 77, 309 (1982).
- 65. Schraml-Marth, M., Fluhr, W., Wokaun, A., and Baiker, A., Ber. Bunsenges. Phys. Chem. 8, 852 (1989).
- Ciambelli, P., Bagnasco, G., Lisi, L., Turco, M., Chicarello, G., Musci, M., Notaro, M., Robba, D., and Ghetti, P., Appl. Catal. B Environ. 1, 61 (1992).
- Kantcheva, M. M., Hadjiivanov, K. I., and Klissurrski, D. G., J. Catal. 134, 299 (1992).
- Daniel, M. F., Desbat, B., Lassegues, J. C., Gerand, B., and Figlarz, M., J. Solid State Chem. 67, 235 (1987).
- Stencel, J. M., "Raman Spectroscopy for Catalysis," Van Nostrand-Reinhold, New York, 1990.
- 70. Ramis, G., Busca, G., and Bregani, F., Catal. Lett. 23, 353 (1994).
- Ohsaka, T., Izumi, F., and Fujiki, Y., J. Raman Spectrosc. 7, 321 (1978).
- 72. Busca, G., Gallardo, Amores, J. M., Piaggio, P., Ramis, G., and Sanchez Escribano, V., J. Chem. Soc. Faraday Trans. 90, 3181 (1994).
- 73. Yi, L., Ramis, G., Busca G., and Lorenzelli, V., *J. Mater. Chem.* **4,** 1755 (1994).
- Ocana, M., Fornes, V., Garcia Ramos, J. V., and Serna, C. J., J. Solid State Chem. 75, 364 (1988).
- 75. Waters, D. N., Spectrochim. Acta 50A, 1833 (1994).
- 76. Hayashi, S., and Kanamori, K., Phys. Rev. B 26, 7079 (1982).
- 77. Unpublished results from our laboratories.
- 78. Chen, J. P., and Yang, R. T., J. Catal. 139, 277 (1993).